36 research outputs found

    Efficiently Tracking Homogeneous Regions in Multichannel Images

    Full text link
    We present a method for tracking Maximally Stable Homogeneous Regions (MSHR) in images with an arbitrary number of channels. MSHR are conceptionally very similar to Maximally Stable Extremal Regions (MSER) and Maximally Stable Color Regions (MSCR), but can also be applied to hyperspectral and color images while remaining extremely efficient. The presented approach makes use of the edge-based component-tree which can be calculated in linear time. In the tracking step, the MSHR are localized by matching them to the nodes in the component-tree. We use rotationally invariant region and gray-value features that can be calculated through first and second order moments at low computational complexity. Furthermore, we use a weighted feature vector to improve the data association in the tracking step. The algorithm is evaluated on a collection of different tracking scenes from the literature. Furthermore, we present two different applications: 2D object tracking and the 3D segmentation of organs.Comment: to be published in ICPRS 2017 proceeding

    Pheochromocytoma and paraganglioma: Clinical feature based disease probability in relation to catecholamine biochemistry and reason for disease suspicion

    Full text link
    OBJECTIVE Hypertension and symptoms of catecholamine excess are features of pheochromocytomas and paragangliomas (PPGLs). This prospective observational cohort study assessed whether differences in presenting features in patients tested for PPGLs might assist establishing likelihood of disease. DESIGN AND METHODS Patients were tested for PPGLs because of signs and symptoms, an incidental mass on imaging or routine surveillance due to previous history or hereditary risk. Patients with (n=245) compared to without (n=1820) PPGLs were identified on follow-up. Differences in presenting features were then examined to assess probability of disease and relationships to catecholamine excess. RESULTS Hyperhidrosis, palpitations, pallor, tremor and nausea were 30-90% more prevalent (P<0.001) among patients with than without PPGLs, whereas headache, flushing and other symptoms showed little or no differences. Although heart rates were higher (P<0.0001) in patients with than without PPGLs, blood pressures were not higher and were positively correlated to body mass index (BMI), which was lower (P<0.0001) in patients with than without PPGLs. From these differences in clinical features, a score system was established that indicated a 5.8-fold higher probability of PPGLs in patients with high than low scores. Higher scores among patients with PPGLs were associated, independently of tumor size, with higher biochemical indices of catecholamine excess. CONCLUSIONS This study identifies a complex of five signs and symptoms combined with lower BMI and elevated heart rate as key features in patients with PPGLs. Prevalences of these features, which reflect variable tumoral catecholamine production, may be used to triage patients according to likelihood of disease

    Determinants of disease-specific survival in patients with and without metastatic pheochromocytoma and paraganglioma

    Get PDF
    BACKGROUND: Pheochromocytomas and paragangliomas (PPGLs) have a heterogeneous prognosis, the basis of which remains unclear. We, therefore, assessed disease-specific survival (DSS) and potential predictors of progressive disease in patients with PPGLs and head/neck paragangliomas (HNPGLs) according to the presence or absence of metastases. METHODS: This retrospective study included 582 patients with PPGLs and 57 with HNPGLs. DSS was assessed according to age, location and size of tumours, recurrent/metastatic disease, genetics, plasma metanephrines and methoxytyramine. RESULTS: Among all patients with PPGLs, multivariable analysis indicated that apart from older age (HR = 5.4, CI = 2.93-10.29, P < 0.0001) and presence of metastases (HR = 4.8, CI = 2.41-9.94, P < 0.0001), shorter DSS was also associated with extra-adrenal tumour location (HR = 2.6, CI = 1.32-5.23, P = 0.0007) and higher plasma methoxytyramine (HR = 1.8, CI = 1.11-2.85, P = 0.0170) and normetanephrine (HR = 1.8, CI = 1.12-2.91, P = 0.0160). Among patients with HNPGLs, those with metastases presented with longer DSS compared to patients with metastatic PPGLs (33.4 versus 20.2 years, P < 0.0001) and only plasma methoxytyramine (HR = 13, CI = 1.35-148, P = 0.0380) was an independent predictor of DSS. For patients with metastatic PPGLs, multivariable analysis revealed that apart from older age (HR = 6.2, CI = 3.20-12.20, P < 0.0001), shorter DSS was associated with the presence of synchronous metastases (HR = 4.9, CI = 2.78-8.80, P < 0.0001), higher plasma methoxytyramine (HR = 2.4, CI = 1.44-4.14, P = 0.0010) and extensive metastatic burden (HR = 2.1, CI = 1.07-3.79, P = 0.0290). CONCLUSIONS: DSS among patients with PPGLs/HNPGLs relates to several presentations of the disease that may provide prognostic markers. In particular, the independent associations of higher methoxytyramine with shorter DSS in patients with HNPGLs and metastatic PPGLs suggest the utility of this biomarker to guide individualized management and follow-up strategies in affected patients

    Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses

    Full text link
    CONTEXT: Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE: Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS: Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS: Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION: SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs

    Biochemical Diagnosis of Chromaffin Cell Tumors in Patients at High and Low Risk of Disease: Plasma versus Urinary Free or Deconjugated -Methylated Catecholamine Metabolites

    Full text link
    BACKGROUND Measurements of plasma or urinary metanephrines are recommended for diagnosis of pheochromocytoma and paraganglioma (PPGL). What test offers optimal diagnostic accuracy for patients at high and low risk of disease, whether urinary free metanephrines offer advantages over deconjugated metanephrines, and what advantages are offered by including methoxytyramine in panels all remain unclear. METHODS A population of 2056 patients with suspected PPGLs underwent prospective screening for disease using mass spectrometric-based measurements of plasma free, urinary deconjugated, and urinary free metanephrines and methoxytyramine. PPGLs were confirmed in 236 patients and were excluded in others on follow-up evaluation. RESULTS Measurements of plasma free metabolites offered higher ( < 0.01) diagnostic sensitivity (97.9%) than urinary free (93.4%) and deconjugated (92.9%) metabolites at identical specificities for plasma and urinary free metabolites (94.2%) but at a lower ( < 0.005) specificity for deconjugated metabolites (92.1%). The addition of methoxytyramine offered little value for urinary panels but provided higher ( < 0.005) diagnostic performance for plasma measurements than either urinary panel according to areas under ROC curves (0.991 vs 0.972 and 0.964). Diagnostic performance of urinary and plasma tests was similar for patients at low risk of disease, whereas plasma measurements were superior to both urinary panels for high-risk patients. CONCLUSIONS Diagnosis of PPGLs using plasma or urinary free metabolites provides advantages of fewer false-positive results compared with commonly measured deconjugated metabolites. The plasma panel offers better diagnostic performance than either urinary panel for patients at high risk of disease and, with appropriate preanalytics, provides the test of choice. Measurements of methoxytyramine in urine show limited diagnostic utility compared with plasma

    Machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study

    Get PDF
    Background: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. Methods: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. Findings: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. Interpretation: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. Funding: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1)

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Get PDF
    This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Full text link
    corecore